10,873 research outputs found

    Non-equilibrium of Ionization and the Detection of Hot Plasma in Nanoflare-heated Coronal Loops

    Full text link
    Impulsive nanoflares are expected to transiently heat the plasma confined in coronal loops to temperatures of the order of 10 MK. Such hot plasma is hardly detected in quiet and active regions, outside flares. During rapid and short heat pulses in rarified loops the plasma can be highly out of equilibrium of ionization. Here we investigate the effects of the non-equilibrium of ionization (NEI) on the detection of hot plasma in coronal loops. Time-dependent loop hydrodynamic simulations are specifically devoted to this task, including saturated thermal conduction, and coupled to the detailed solution of the equations of ionization rate for several abundant elements. In our simulations, initially cool and rarified magnetic flux tubes are heated to 10 MK by nanoflares deposited either at the footpoints or at the loop apex. We test for different pulse durations, and find that, due to NEI effects, the loop plasma may never be detected at temperatures above ~5 MK for heat pulses shorter than about 1 min. We discuss some implications in the framework of multi-stranded nanoflare-heated coronal loops.Comment: 22 pages, 7 figures, accepted for publicatio

    Spatial distribution of X-ray emitting ejecta in Tycho's SNR: indications of shocked Titanium

    Get PDF
    Young supernova remnants show a characteristic ejecta-dominated X-ray emission that allows us to probe the products of the explosive nucleosynthesis processes and to ascertain important information about the physics of the supernova explosions. Hard X-ray observations have recently revealed the radioactive decay lines of 44Ti at ~67.9 keV and ~78.4 keV in the Tycho's SNR. We here analyze the set of XMM-Newton archive observations of the Tycho's SNR. We produce equivalent width maps of the Fe K and Ca XIX emission lines and find indications for a stratification of the abundances of these elements and significant anisotropies. We then perform a spatially resolved spectral analysis by identifying five different regions characterized by high/low values of the Fe K equivalent width. We find that the spatial distribution of the Fe K emission is correlated with that of the Cr XXII. We also detect the Ti K-line complex in the spectra extracted from the two regions with the highest values of the Fe and Cr equivalent widths. The Ti line emissions remains undetected in regions where the Fe and Cr equivalent widths are low. Our results indicate that the post-shock Ti is spatially co-located with other iron-peak nuclei in Tycho's SNR, in agreement with the predictions of multi-D models of Type Ia supernovae.Comment: Accepted for publication in Ap

    Magnetic shuffling of coronal downdrafts

    Get PDF
    Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have been recently addressed from an observation after a solar eruption. We study the possible back-effect of the magnetic field on the propagation of confined flows. We compare two 3D MHD simulations of dense supersonic plasma blobs downfalling along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned to the magnetic field and the field is weaker. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling of the field lines, and structured into thinner filaments; Alfven wave fronts are generated together with shocks ahead of the dense moving front. Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned to field lines, with broad implications, e.g., disk accretion in protostars, coronal eruptions and rain.Comment: 9 pages, 4 figures, proposed for acceptance, movies available upon request to the first autho

    The X-ray cycle in the solar-type star HD 81809

    Full text link
    (abridged) Our long-term XMM-Newton program of long-term monitoring of a solar-like star with a well-studied chromospheric cycle, HD 81809 aims to study whether an X-ray cycle is present, along with studying its characteristics and its relation to the chromospheric cycle. Regular observations of HD 81809 were performed with XMM-Newton, spaced by 6 months from 2001 to 2007. We studied the variations in the resulting coronal luminosity and temperature, and compared them with the chromospheric CaII variations. We also modeled the observations in terms of a mixture of active regions, using a methodology originally developed to study the solar corona. Our observations show a well-defined cycle with an amplitude exceeding 1 dex and an average luminosity approximately one order of magnitude higher than in the Sun. The behavior of the corona of HD 81809 can be modeled well in terms of varying coverage of solar-like active regions, with a larger coverage than for the Sun, showing it to be compatible with a simple extension of the solar case.Comment: In press, Astronomy & Astrophysic

    On the Use of the Synthetic Chemical Steroids

    Get PDF

    Post-flare UV light curves explained with thermal instability of loop plasma

    Get PDF
    In the present work we study the C8 flare occurred on September 26, 2000 at 19:49 UT and observed by the SOHO/SUMER spectrometer from the beginning of the impulsive phase to well beyond the disappearance in the X-rays. The emission first decayed progressively through equilibrium states until the plasma reached 2-3 MK. Then, a series of cooler lines, i.e. Ca x, Ca vii, Ne vi, O iv and Si iii (formed in the temperature range log T = 4.3 - 6.3 under equilibrium conditions), are emitted at the same time and all evolve in a similar way. Here we show that the simultaneous emission of lines with such a different formation temperature is due to thermal instability occurring in the flaring plasma as soon as it has cooled below ~ 2 MK. We can qualitatively reproduce the relative start time of the light curves of each line in the correct order with a simple (and standard) model of a single flaring loop. The agreement with the observed light curves is greatly improved, and a slower evolution of the line emission is predicted, if we assume that the model loop consists of an ensemble of subloops or strands heated at slightly different times. Our analysis can be useful for flare observations with SDO/EVE.Comment: 24 pages, 7 figures, accepted for publicatio
    • …
    corecore